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SUMMARY 
The steady Navier-Stokes equation is solved to simulate the wind-flow environment of three-dimensional 
configurations of buildings. The method assumes an incident wind described by a power-law velocity profile. 
A new method for controlling the two-part nested solution iteration is introduced. The simulation is 
compared to some published wind-tunnel measurements. 
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INTRODUCTION 

The prediction of the exposure of buildings to wind is a significant factor in assessing their energy 
performance, and the conditions of comfort in the spaces surrounding buildings are dependent 
upon the structure of the perturbed wind flow which these buildings create. For these and other 
reasons the problem of air flow around configurations of large-scale bluff bodies continues to 
attract interest. In order to understand the environmental implications of a proposed building, it 
would be useful for a designer to have an estimate of its effect on the wind in interaction with its 
surroundings. Ideally, as a preliminary guide, a designer should have available a systematic 
compilation of environmental wind effects for a wide variety of building shapes and configurations. 

Of course the flow of air with a prescribed velocity profile, and with an arbitrary direction of 
incidence, over even a single bluff body is a problem of considerable physical complexity: when this 
problem is extended to an arbitrary configuration of bluff bodies, this complexity is obviously 
compounded. Typically the problem has been studied using material scale models of buildings in 
wind-tunnels. The task of constructing a series of scale-model experiments to explore systemati- 
cally the general 'model space' of a collection of buildings is laborious because of the multiplicity of 
configurations which must be investigated. Furthermore, wind-tunnel experiments require 
resources of time and expertise which are often not available to architects and planners working 
within commercial constraints. 

Thus a reliable computer simulation of wind flow around groups of three-dimensional bluff 
bodies can make a contribution to this problem by facilitating a less time-consuming exploration 
of the model space. In principle, a computer wind-flow simulation can make wind-related design 
information accessible to an architect at every stage of the design process. 

What is required in this context is a numerical solution to the NavierStokes equation, together 
with the mass continuity equation, which can accurately predict the gross features of the flow field 
surrounding a building group. The accuracy with which a wind-tunnel can simulate full-scale flow 
is estimated to be about 20 per cent,',* and it would be reasonable to demand of any computational 
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simulation that it approach wind-tunnel measurements to this same level of accuracy. 
The aerodynamic problem is one of high Reynolds number, typically Re - lo6. Flow separation 

occurs at sharp corners with zones of recirculation in the lee of the buildings. The surface boundary 
layer on a building is of the order of lo-’ m thick, whereas the atmospheric boundary layer and 
other large-scale features, such as the wake region, have dimensions of order 10’ m. The disparity in 
these characteristic length scales makes it impracticable to resolve them simultaneously using 
variable grid spacing techniques. The approach adopted here has been to use a variable grid for the 
medium- to large-scale features, with spacings ranging from 1 to 5 metres in the vicinity of buildings 
and from 10 to 20 metres in the free-stream and far-wake regions. For grid points adjacent to solid 
surfaces appropriate frictional source terms are included in the momentum equations. This 
procedure effectively smears out the effects of friction over the volume of a computational ‘cell’ and 
is therefore a crude approximation to the actual flow near the building surface. However, small- 
scale effects are simulated without detailed resolution of the boundary layers, and the treatment 
provides a representation of the boundary effects which is sufficiently accurate for the present 
purpose. 

Consistent with this treatment, which attempts to satisfy the governing physical laws 
macroscopically, a control volume scheme was chosen for discretization of the continuum 
equations. The solution method is based on that proposed by Caretto et ~ l . , ~ , ~ ,  for problems 
involving high Reynolds number, including environmental  problem^.^ 

In the case of a configuration of several buildings, local features can develop in the flow which 
can be directly related to the relative dimensions of the buildings, their geometrical shapes, and 
their site configuration. A particular example of such a feature is the ‘reverse vortex flow’ which 
develops in the space between two parallel buildings which are orientated perpendicular to the 
incident wind stream. This feature has been examined in detail by Penwarden and Wise’ using 
wind-tunnel models. The parametric curves determined from these experiments (see Figure 48 in 
Reference 5 )  provide a specific indication of the relationship between the maximum reverse-flow 
wind speed at ground-level between the buildings and the relative heights of the buildings, their 
width-to-height aspect ratio, and their separation. These curves provide a direct quantitative test 
for the accuracy of a simulation of the flow environment of buildings. 

The wind-flow field around the same two-building configuration has also been studied by sand 
erosion techniques6 The contour depiction of the flow field determined in this way can provide a 
further test with which to assess the usefulness of a numerical simulation. 

SOLUTION METHOD 

Finite difference equations 

A control volume solution method has already been applied to two-dimensional architectural 
problems by the authors.’ Here the method is briefly described in the context of three-dimensional 
problems. 

An incompressible fluid occupies a three-dimensional Cartesian space (x, y, z) over a ground 
plane at z = 0 (the ‘site’). One or more bluff obstacles (i.e. buildings) are located on this plane; x is 
considered to be the direction of the incident free-stream. The fluid, of density p and viscosity p, is in 
time-steady motion over the buildings with velocity u = (u, u, w) and pressure p .  

The steady NavierStokes equation expresses momentum conservation for the flow, e.g. in the x 
direction, 

au au a,> ( a Z u  aZu a2,) ap p u-++-++- - p  -+-+- +--0.  ( ax ay az ax2  a y 2  az2 ax 
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Y 
Figure l(a). Grid nomenclature for the face areas of a control volume cell 

Similar equations apply to the u and w components. 
The velocity field must also satisfy conservation of mass 

au au aw 
ax ay az -+-+- = 0. 

To represent (1) and (2) in discrete form suitable for numerical solution we consider the solution 
domain to be occupied by a three-dimensional grid which defines a set of N control volumes or 
cells: the ith cell has dimensions (6xi, 6yi,  6zi). The transport of momentum by convection and 
diffusion between the ith cell and its six neighbouring cells is considered. Following Figure l(a), 
these adjacent cells are denotedj= e, w, n, s, h, 1 (east, west, north, south, high, low), with the area of 
the cell face between the ith andjth cells denoted Aj .  The distance between the central node of the 
ith cell and that of its jth neighbour is denoted dj .  

The balance equation for ui (the x-component of momentum per unit mass for the ith cell) 
consists of the following terms: (1) the rate of convective inflow of u from neighbours into i; (2) the 
rate of convective outflow of u from i to its neighbours; (3) the rate of diffusive transport of u into i 
from its neighbours; (4) internal source of u. The sum of these terms must vanish, and this balance 
can be denoted symbolically as 

1 cyui - u i l  cgU‘ + 1 Dj(uj - ui) + S,  = 0, j =  e, w, n, s, h, 1, 

where 
cj” = pAj max(0, qj), 

cgU‘ = pAi max(0, - qj), 

(3) 

(4) 

and qj = - ui, 4, - ui, us, - wi, we, for j =  e, w, n, s, h, 1, the signs being chosen such that qi > 0 
implies mass inflow (see Figure l(b)). Note that c? 2 0, for all j ,  i.e. we employ an ‘upwind’ 
formulation of the convective term. 

If the velocity field is constrained to satisfy the continuity equation (2) then the outflow term may 
be replaced as 

1 CgU‘ = c cy. 

Dj = pAj/dj .  (6) 

( 5 )  
j j 

The diffusive term assumes a linear relationship (Fick’s law), with coefficient 

The form of the source term S,  varies from cell to cell, depending on proximity to solid 
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x-y Plane 

Figure l(b). Staggered non-uniform grid in x - y plane 

boundaries. In general, S, associated with the ith cell contains a pressure term 

SE = (Pi - P e ) A e *  (7) 
In addition, for cells adjacent to solid boundaries, when considering momentum components 
parallel to the solid surface, a non-linear frictional shear stress term is also included 

S” = Sf: + uis:, (8) 

where S: is derived from Blasius’ expression for turbulent shear flow. 
Using the above relations and defining local transport coefficients, 

aj = c? + Dj, 
equation (3) may be rearranged to give 

C ajuj + Sf: 

where u: denotes an intermediate estimate for ui. Equations analogous to (9) may also be written 
for u: and w:. 

The solution algorithm consists essentially of a ‘combined iteration’ scheme in which equation 
(9) is solved for u* = (u*, u*, w * )  using an initial velocity field u which satisfies continuity. u* then 
satisfies (9) identically but does not in general satisfy continuity, so that the net rate of mass inflow 
to the ith cell may be non-zero, i.e. 

C cj* = &i*, 
i 

where cj* = pAjqj*, with qj* corresponding to the qj defined in (4), is the convective mass inflow from 
the jth to the ith cell (without ‘upwinding’) and ci represents the rate of mass accumulation within 
the ith cell. 
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To eliminate E: we compute a set of pressure increments dpi which, when applied to the u* field, 
restores mass continuity, i.e. 

aq* 
qi = q; + J (dpi - dpj), j =  e, n, h, 

aP 

such that 

C c j = C p A .  19, . - E .  - 1 )  (12) 
i i 

where, for the present analysis, we assume ei = 0. 
The partial derivative in (1 1) is estimated from (9) and (7), for example, as 

Rewriting (10) in terms of convective flows and summing over j we obtain 

where 

Substituting in (14) from (10) and (1 1) and rearranging, we obtain an expression for the pressure 
increment: 

This is equivalent in form to the discrete approximation to a Poisson's equation, with second- 
order differences, and may be solved using any standard iterative method. The methods used for 
the inner and outer iterative procedures, and for overall control of the solution algorithm, are 
described later. 

Following adjustment of the velocities using (1 l), the pressure field is updated to give a pressure 
distribution which, when applied during the next application of (9), will tend to reduce the E:, thus 

(16) 
where p: denotes the pressure field from the preceding iteration. 

The use of upwind differencing of the convective terms in the momentum f.d.e.s is a source of 
numerical error. The formal accuracy requirement when using this method is Rei << 2, where Rei 
represents the cell Reynolds number for the ith cell and is given by Rei = uiSxi/2 for the x direction. 

For slightly viscous flows this constraint is usually very difficult to satisfy. In such problems 
however the effects of large Rei on the overall accuracy of the solution need not be critical, since the 
convective terms are typically two or three orders of magnitude greater than the diffusive terms. In 
the present work, this inequality applies everywhere in the solution domain with the exception of 
near-wall regions. To improve the accuracy of the solution we have replaced the physical viscosity 
with an effective value peff - lo3 p. Although this expedient does not reduce Rei sufficiently to meet 
the formal requirement, it provides plausible solutions for bluff body flows of the kind considered 
here. 

pi = p: + dpi, 
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Boundary conditions for architectural application 

At the inlet (the plane x = 0) and outflow (x = X) boundaries, a velocity profile is specified which 
simulates the steady characteristics of an atmospheric boundary layer with power-law distribution: 
thus at x = 0 or X we have 

u = uref (Z/Zref)a, 

v = o ,  (17) 
w = o ,  

where uref is the inlet stream velocity evaluated at the reference height zref and a is a prescribed 
exponential factor (typically a = 016 for rural wind conditions or a = 028 for suburban 
conditions). Precaution must be taken to place the outflow boundary well downstream of the 
obstacles if the wake is not be distorted by the imposition of condition (17). On the lateral 
extremities of the site, i.e. y = 0 or Y,  and on its upper extremity, i.e. z = Z,  the flow is also specified 
by (17): the boundary-layer flow at these perimeters of the site is considered to be unperturbed. 

At the solid surfaces (i.e. z = 0 and on the surface of the buildings themselves) no attempt is made 
to represent the microscopic structure of the no-slip boundary layers which are formed there. 
Rather, we approximate the impermeability and no-slip conditions in the following ways. The 
shear stress at a solid surface is represented by Blasius’ formula for a flat plate at zero incidence in 
turbulent flow, i.e. 

z = c,ui/dA, (18) 
where uII denotes the velocity parallel to the surface on the outer edge of its boundary layer and c, is 
a constant characterizing the flow, namely 

c, = 0*03(Re)-’’5p. (19) 

Re= PUinLIK (20) 

In the present work the value of Re used in (19) is computed as 

in which uin is the average inlet free-stream velocity and Lis a typical building dimension. It should 
be noted that the choice of parameters for calculating Re is not critical, since c, is relatively 
insensitive to Re. Over the range of values encountered in architectural flows, say Re = 105-107, c, 
varies only by a factor of 2.5. The momentum source associated with flow over a solid surface can 
now be expressed as 

S: = (z/uII (21) s 
where A is the surface area of the wall. When a control volume cell is intersected by a solid 
boundary, the ‘occluded’ area, Bj of each of the cell faces is determined from the grid geometry. This 
can then be used to construct a discrete expression for (16), namely 

S: = CrIUiICBj, (22) 
where j denotes summation over all faces in planes parallel to ui. 

The impermeability condition is represented by evaluating the reduced area of each partially 
occluded cell, i.e. evaluating AS = A j  - Bj, and hence using these reduced areas at solid boundaries 
instead of Aj in equations (4)-(15). 

There is no attempt to impose a conventional ‘no-slip’ boundary condition, i.e. ull = 0. To impose 
a zero slip would require fine-gridding close to the surface to achieve a reasonable approximation 
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to the boundary layer profile; the escalation in computation time and storage requirements would 
be unacceptable. The complexity of choosing a suitable gridding arrangement for buildings which 
were not aligned with the site axes would also increase substantially. 

If the boundary conditions are such that a flow is known a priori to be symmetric across a plane, 
y = y ,  say, then the flow need only be solved in one half of the flow domain, i.e. in 0 < y < y,, or 
alternatively in y ,  < y -= Y. The boundary condition at y = y ,  is simulated by forcing the transport 
coefficients which control diffusive and convective transfer across this boundary to vanish. 

Since the velocity field at the site boundaries always satisfies continuity, the external boundary 
condition for the pressure adjustment equation (15) is simply dp = 0. This condition must also 
apply for cells within solid obstacles, and is ensured by the fact that the coefficients of dp, in (1 5) are 
set to zero for blocked cell faces. 

The method can be applied to an arbitrary number of building shapes and configurations 
although, in the present examples, the algorithm is applied to block-shaped structures. Each 
building may be given an independent orientation and position within the site. In addition, three- 
dimensional simple convex forms can be treated as modules: by juxtaposing them, horizontally or 
vertically, more complicated building forms can be constructed. 

Solution algorithm 
The selection of solution methods for the finite difference equations (9) and (15) is determined 

largely by the properties of the equations themselves. However the definition of ‘optimal’ methods 
may also depend on external influences. In the present work it was most desirable that the methods 
used should accommodate a wide range of building shapes and configurations without user 
intervention. 

The principal steps in the algorithm are: 
An initial guess for the velocity field uo is obtained from a potential flow calculation. Since 
the inlet shear flow given by equation (17) is inappropriate to potential flow, it is temporarily 
replaced by uniform inlet and outlet profiles with total mass flow equivalent to that of the 
power-law profile. When the potential flow solution has converged the original boundary 
conditions are re-inserted; uo then satisfies continuity everywhere except at the inlet and 
outlet planes. These local imbalances are quickly removed by the subsequent pressure- 
correction procedure (15). The pressure field is initially set to zero. 
Equation (9) is solved to obtain ug, where m is the outer iteration number, using a Jacobi 
procedure with ‘under-relaxation’, namely 

u: = (Y(um) + u,)/2, 
where f is the Jacobi operator corresponding to (9). The use of Jacobi, or some other 
‘simultaneous’ method, ensures compliance with the continuity assumption (5 ) ,  which is 
implicit in (9). Convergence of this scheme is assured since the iteration matrix is diagonally 
dominant by virtue of the source term S: in the denominator of (9), which is strictly non- 
negative. Convergence of the momentum equations is monitored at this point by computing 
residual errors, e.g. for the u-component 

R, = max { I ur/ui) - 1 I }, 
i 

with ui > hi,, to exclude very small values in the denominator, and = mi,, where 0 is a 
predetermined error level, typically 0.05. 
Variables required for solution of the pressure equation (15) are assembled, and the number 
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of iterations to be performed by the inner loop is estimated using the simple predictive 
procedure which is described in the next subsection. Equation (15) is then solved by 
successive over-relaxation using a 3-D chequerboard sweep pattern to improve convergence. 
A value for the relaxation parameter, o = 1.5, was reasonably effective for a range of building 
configurations. 

(d) The velocity and pressure fields are updated using equations (1 1) and (16), respectively. A 
residual error for pressure is also calculated: 

Rp = max { I (dpilpi) - 1 I 1, 
I 

with 
2 Pi ' Pmin, Pmin = ('Win. 

(e) If R,,, R,, R, and Rp are all less than (r then the solution is deemed to have converged and 
iteration is terminated; otherwise we return to step (b) and continue the process. The choice 
of convergence level is arbitrary. Accuracy may be 'traded-off' against computation time 
by adjustment of c. 

Control of the pressure solution 
Since many iterations of the pressure correction equation (1 5 )  may be required during each cycle 

of the algorithm, the number of iterations of the inner loop per cycle is a factor which strongly 
influences the overall efficiency of the method. This efficiency can be improved by controlling the 
inner iteration, i.e. by allowing sufficient iterations to be performed to ensure an acceptable level of 
continuity, without 'oversolving' the correction equation. 

A simple method has been introduced to achieve this control. The level of continuity required of 
a given outer iteration can be calculated as follows. The field u does not satisfy ( 5 )  exactly, but gives 
rise to a residual upwind inflow error in each cell, E? such that 

Hence (9) can be re-expressed as 

The convergence constraint 

ensures that at each iteration the denominator of (23) does not fluctuate in a manner which will 
swamp the systematic convergence of u* and u. To impose (24) a normalized residual continuity 
error for the rnth outer iteration is defined: 

where ci is the continuity error, for the ith cell, of the adjusted velocity field as defined by (10). 
Neglecting source terms, the constraint (24) becomes Em << 1 for all rn Prior to entering the pressure 
correction iteration, the analogous continuity error can be expressed for the 'unadjusted' field: 

E z  = max {&I. 
i 
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Since (15) is linear in dp and the {ci} are linear functions of dp by virtue of the convective mass 
flows, we may use Em as an error norm. Following completion of the mth outer iteration during 
which n, inner iterations have been performed, the spectral radius 1, can be calculated from 

where 1, defined in this way is independent of source terms and so remains reasonably constant 
from one cycle to the next. Under the assumption A,,,+ x I ,  we may predict the number of 
iterations required in the pressure correction in the (m + 1)th cycle: 

where EL+ is a ‘target’ value of Em+ which is related to the existing momentum residuals by, for 
example, 

(29) E‘ = K(Ri  + Ri + R;)”*, 
with, typically, K = 0.1. As the iteration proceeds and the momentum residuals decrease in 
magnitude, the continuity condition is thus enforced with greater strictness. The control 
calculation takes place entirely outside the pressure-correction iteration. 

A TWO-BUILDING PROBLEM: COMPARISON WITH EXPERIMENT 

A problem which has attracted considerable attention is that associated with the ‘reverse vortex 
flow’ which can become established between two parallel buildings. A body of wind-tunnel data 
from a number of sources exists for this case to which the present simulation can be usefully 
compared. 

We consider two rectangular buildings with dimensions W x D x h and W x D x H, respec- 
tively. W is the common span-width of both buildings, D is their streamwise thickness, h is the 
building height of the upstream building, and H that of the building downstream. We consider the 
case H > h. The two buildings are aligned parallel to each other and the whole configuration is 
orientated perpendicular to the incident wind stream. The buildings have a common axis of 
bilateral symmetry, and are separated by a distance Lin the stream direction (i.e. in the x-direction). 

The control volume solution of this problem should supply us with a flow field solution, u, and 
pressure field, p,  in the half-plane of symmetry. One of the considerable advantages of a numerical 
simulation of such a flow is that this can be inspected graphically at will. Because the fields typically 
include a complicated wake structure, a clear graphical visualization of the complete three- 
dimensional flow space is often difficult to achieve. In these cases the flow patterns can be more 
usefully depicted through a plane-by-plane inspection of the flow. 

Figures 2-5 illustrate the solutions for the two-building configuration described, with the 
following building parameters: W = 60 m, D = 17 m, L = 60 m, H = 60 m, h = 12 m. The inlet 
stream has an unperturbed profile given by (17) with CI = 0.16, uref = 5 m/s and zref = 10m. The 
solution was determined on a 41 x 20 x 19 site grid, which implies 15,580 grid cells in total. 
Convergence was achieved after 302 outer cycles of the momentum iteration, with residuals (Ru, R,, 
R,, RP) = (0~046,0~0075,0023,0~0005). This computation required 445 minutes of batch time on a 
DEC System 10. 

The flow can be depicted by considering any plane (conveniently one parallel to one of the grid 
planes) and constructing a streakline illustration of the flow. This is achieved by following over a 
few time steps the paths of an array of massless particles which are released into the flow from the 
chosen plane. For example, Figure 2 illustrates the streaklines released from the plane z = 2 m, i.e. 
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/ / 

Figure 3. Elevation view of the flow: the streaklines released from a plane along the flow axis of symmetry 

the plane 2 m above the ground. (We refer to the flow on this plane as the ground-level wind flow.) 
Both the reverse flow between the parallel buildings and the recirculation of the wake can be 
observed in Figure 2. 

Figure3 illustrates the streakline pattern in a streamwise elevation for a plane one metre from the 
plane of symmetry of the flow. This diagram shows more clearly the vertical character of the 
stationary reverse-vortex which is formed between the buildings, the shear separation from the lee 
corner of the tall building, and the general recirculation of the flow downstream of the buildings. In 
addition to the larger clockwise recirculation zone, there appears to be also a smaller reverse eddy 
immediately behind the lee face at ground level. (This latter feature can be compared with the anti- 
clockwise eddy which Davies et aL8 observe in the near wake of a single building of height H for a 
‘smooth uniform’ incident stream. This stream in fact has a boundary layer formed of thickness 
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Figure qa). Contour map of simulated ground-level wind speeds (normalized with respect to upstream value) 

Figure qb). For the same building configuration, a contour map of friction velocities determined by sand saltation 
experiments (from Borges and Saraiva, 1980)6 

Figure 5. Contour map of pressure field (referenced to upstream value). Dashed lines represent positive pressure; solid 
contours represent negative pressure 
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0.2 H.  It is interesting to speculate whether in the present case of a building upstream of height 
0.2 H ,  there are effectively re-created the shear conditions upstream which give rise to an anti- 
clockwise eddy in the immediate lee of the tall building.) Figure 3 can be compared to the smoke 
particle visualization of the problem in Figure 2 of Reference 5,  or Figure 1 of Reference 9. 

The flow can also be depicted graphically by constructing an interpolated contour map of the 
velocity and pressure fields in a given grid plane. Figure 4(a) illustrates the velocity contours 2 m 
from the ground plane. This map represents the contoured values of the modulus of the velocity 
normalized with respect to their unperturbed upstream values. The large contours at the windward 
corners of the buildings should be noted, as well as the stagnation at the windward face of the low 
building. The structure of the reverse vortex flow between the buildings may also be observed. 

The contouring levels in Figure 4(a) have been chosen to allow a direct numerical comparison to 
be made with the wind-speed contour map published by Borges and Saraiva6 (see their Figure 5). 
This map, reproduced here in Figure 4(b), is determined from the scour patterns formed by the 
saltation of fine grains of sand distributed over the ground plane of a wind-tunnel scale-model 
experiment. The scour patterns created by successively increased free-stream flow give a 
quantitative indication of the friction velocity on the ground plane surrounding a building 
configuration. For the same configuration and incident flow conditions (leaving aside the 
turbulence representation), it can be seen from Figure 4 that the control volume simulation we 
present does show encouraging numerical agreement with the experimentally-determined flow 
field. Such a comparison must be made with the realization that the fine-structure of both contour 
maps may depend upon the distribution of measurement points and the method of interpolation. 
Furthermore the correlation between the friction velocity determined from a scale model sand 
saltation experiment, and the wind speed at a height of 2 m from the ground in a full-scale case, 
must remain a matter of uncertainty. The agreement depicted in Figure 4 may lend encouragement 
to both methods for determining ground speeds around buildings. Figure 4 can also be compared 
to the oil film representation of this field (see Figures 3 and 4 in Reference 5). It can be noted that the 
shear separation from the leeward corners of the taller building is sharper in both the oil-film 
visualization and computer simulation that it is in the case of the sand erosion experiment. In 
Figures 3 and 4 the centre position of the reverse vortex lies closer to the upstream building than to 
the downstream one; this feature is also evident in the illustrations in Reference 5, although it is not 
so obvious from the sand erosion experiment in Reference 6. 

A similar map of the numerically simulated pressure field at height z = 2 m is illustrated in Figure 
5. The dashed contours represent pressure which is positive relative to an upstream reference 
pressure; the solid contours represent negative pressures. The pressure on the windward face of 
both buildings indicates a positive stagnation pressure. On the immediate leeward faces of both 
buildings a negative (i.e. suction) pressure develops, although in the space between the buildings 
this is relatively slight; a stronger suction field develops to the lee of the taller building. 

A more systematic and thorough comparison of the present simulation to experimental 
measurement can be achieved by deriving analogous parametric curves to the wind-tunnel studies 
published by Penwarden and Wise5 in their Figure 48. For these curves, the maximum reverse-flow 
speed at the ground level between the buildings is normalized with respect to the free-stream speed 
at height z = H (i.e. at the height of the taller building). This ratio is then plotted as a function of 
width-to-height aspect ratio, W / H ;  this is presented in Reference 5 for four values of the separation- 
to-height ratio, L/H. Each measurement curve encompasses a range of values of H/h, i.e. the ratio 
of building heights. This range is, for the most part, 2 < H / h  < 8.  The authors point out that the 
curves were determined for a windward building height, h, which was not much varied in the course 
of the parametric study. Furthermore they seem to suggest that the widths of the two buildings may 
have been made to differ from each other in the course of the study. 
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Figure 6. The case L/H = 0.5. Maximum reverse vortex speed at ground level (normalized with respect to velocity at z = H ) .  
Comparison of wind tunnel measurement for 2 < H / h  < 8 (open circles) with two computer simulation curves for H / h  = 5 

and H / h  = 2.5 (solid lines) 
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Figure 7. As Figure 6 with LJH = 1.0 
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Figure 8. Comparison of two computer simulations for L/H = 1, H / h  = 5, with ct = 0.16 (upper solid curve) and ct = 0 2 8  
(lower curve) 

We have attempted a comparison with two of the curves presented by Penwarden and Wise, 
namely those associated with L/H = 1.0 and L / H  = 0.5. (The incident free stream for these 
particular comparisons is of power CI = 0.28.) Figure 6 shows the comparison between wind-tunnel 
measurements (open circles) and our computational model (solid lines) for the case L/H = 0.5. The 
two solid curves correspond to the two cases H/h = 5, and H/h = 2.5. Figure 7 illustrates the same 
comparison for the case L/H = 1.0. 

It should be noted that the strength of a reverse-flow vortex depicted as a function of the ratio 
W / H  strongly reflects the three-dimensional character of this flow. Were W / H  to tend to infinity, 
the flow would tend to the limiting case of two-dimensionality. A two-dimensional vortex is 
confined to a single plane since there is no spanwise component to the flow. It can be seen from 
Figure 2 (where W / H  = 1.0) that there develops a significant component of spanwise flow as W / H  
becomes less than 2. In addition to the vertical vortex eddy, fluid becomes drawn laterally from the 
inter-building corridor. This can ‘drive’ the mechanism of the vortex, resulting in the broad 
‘maxima’ evident in Figure 48 of Reference 5. On the other hand, as W / H  tends to zero, the vertical 
component of the flow becomes dominated by spanwise motion, and the reverse-flow vortex 
becomes less prominent. 

Penwarden and Wise have not published the specific values of H/h corresponding to the 
individual measurement points illustrated in Figures 6 and 7. The very close agreement in the 
particular case H/h = 5, L/H = 1, suggests that these model parameters do indeed correspond to 
the relevant data points. Even in cases where agreement is less striking, the comparison is 
encouraging. With few exceptions the computed values of the velocity ratio lie within a 20 per cent 
error band of their nearest experimental point. Both experimental and computational curves are 
very sensitive to error in the normalizing free-stream velocity (such error could shift the curves 
upwards or downwards). Furthermore, no attempt was made to reproduce numerically the specific 
turbulence character of the incident stream of the wind-tunnel. (Penwarden and Wise do not 
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indicate the specific turbulence conditions of their flow.) It remains to be seen how particular 
turbulence models can affect the flow environment of model buildings; the agreement achieved in 
the present exercise suggests that so far as the reverse-vortex flow is concerned, the turbulence in 
the incident stream may be a secondary influence. 

Figure 8 illustrates the effect of varying the inlet profile on the parametric curve of Figure 7. We 
consider the case H / h  = 5,  L/H = 1. The upper curve is for the case M = 0 16 and the lower curve for 
a = 0-28. Contrasted with the effect of varying a building parameter such as H/h, the change in the 
incident stream appears to have less effect on the parametric curve. This is the same conclusion 
which Morgan and Wilson” reached after a wind-tunnel investigation of the same two-building 
configuration. 

CONCLUSIONS 

A control volume method has been applied to the problem of predicting the steady-state wind 
environment of a collection of buildings. For architectural purposes, it is required that the gross 
features of the flow environment be simulated to within some 20 per cent of wind-tunnel 
measurements. Some comparisons with wind-tunnel measurements are presented, and these 
indicate that simulation can reproduce the flow to within the desired accuracy. The present 
comparisons are of a preliminary nature; an experimental investigation is now in progress which is 
designed to provide a more detailed validation. 
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